Ultrafast, Multidimensional Attenuated Total Reflectance Spectroscopy of Adsorbates at Metal Surfaces.

نویسندگان

  • Jan Philip Kraack
  • Davide Lotti
  • Peter Hamm
چکیده

Ultrafast dynamics of molecules at solid-liquid interfaces are of outstanding importance in chemistry and physics due to their involvement in processes of heterogeneous catalysis. We present a new spectroscopic approach to resolve coherent, time-resolved, 2D vibrational spectra as well as ultrafast vibrational relaxation dynamics of molecules adsorbed on metallic thin films in contact with liquids. The setup is based on the technique of attenuated total reflectance (ATR) spectroscopy, which is used at interfaces between materials that exhibit different refractive indices. As a sample molecule, we consider carbon monoxide adsorbed in different binding configurations on different metals and resolve its femtosecond vibrational dynamics. It is presented that mid-infrared, multidimensional ATR spectroscopy allows for obtaining a surface-sensitive characterization of adsorbates' vibrational relaxation, spectral diffusion dynamics, and sample inhomogeneity on the femtosecond time scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecule-specific interactions of diatomic adsorbates at metal-liquid interfaces

Ultrafast vibrational dynamics of small molecules on platinum (Pt) layers in water are investigated using 2D attenuated total reflectance IR spectroscopy. Isotope combinations of carbon monoxide and cyanide are used to elucidate inter-adsorbate and substrate-adsorbate interactions. Despite observed cross-peaks in the CO spectra, we conclude that the molecules are not vibrationally coupled. Rath...

متن کامل

Vibrational ladder-climbing in surface-enhanced, ultrafast infrared spectroscopy.

In a recent work (J. Phys. Chem. C 2016, 120, 3350-3359), we have introduced the concept of surface-enhanced, two-dimensional attenuated total reflectance (2D ATR IR) spectroscopy with modest enhancement factors (<50) using small plasmonic noble metal nanoparticles at solid-liquid interfaces. Here, we show that employment of almost continuous noble metal layers results in significantly stronger...

متن کامل

Two distinctive energy migration pathways of monolayer molecules on metal nanoparticle surfaces

Energy migrations at metal nanomaterial surfaces are fundamentally important to heterogeneous reactions. Here we report two distinctive energy migration pathways of monolayer adsorbate molecules on differently sized metal nanoparticle surfaces investigated with ultrafast vibrational spectroscopy. On a 5 nm platinum particle, within a few picoseconds the vibrational energy of a carbon monoxide a...

متن کامل

Disentangling Multidimensional Nonequilibrium Dynamics of Adsorbates: CO Desorption from Cu(100).

Hot carriers at metal surfaces can drive nonthermal reactions of adsorbates. Characterizing nonequilibrium statistics among various degrees of freedom in an ultrafast time scale is crucial to understand and develop hot carrier-driven chemistry. Here we demonstrate multidimensional vibrational dynamics of carbon monoxide (CO) on Cu(100) along hot-carrier induced desorption studied by using time-...

متن کامل

Time-resolved photoelectron spectroscopy to probe ultrafast charge transfer and electron dynamics in solid surface systems and at metal-molecule interfaces.

Photoelectron spectroscopy (PES) is a versatile tool, which provides insight into electronic structure and dynamics in condensed matter, surfaces, interfaces and molecules. The history of PES is briefly outlined and illustrated by current developments in the field of time-resolved PES. Our group's research is mostly aimed at studying ultrafast processes and associated lifetimes related to elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 5 13  شماره 

صفحات  -

تاریخ انتشار 2014